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Abstract. In coordinate space, quark and gluon distributions of the nucleon are defined as correlation
functions involving two field operators separated by a light-cone distance y+ = 2l. We study the nuclear
modifications of these distributions. The largest effect is a strong depletion of parton distributions (shad-
owing) at large longitudinal distances, which starts for all parton species at l = 2 fm, i.e. at the average
nucleon-nucleon separation in nuclei. On the other hand, the nuclear radius does not play a significant role.
At l <∼ 1 fm, nuclear modifications of parton distributions are small. The intrinsic structure of individual
nucleons is evidently not very much affected by nuclear binding. In particular, there is no evidence for a
significant increase of the quark or gluon correlation length in bound nucleons.

PACS. 13.60.Hb Total and inclusive cross sections – 14.20.Dh Protons and neutrons – 24.85.+p Quarks,
gluons, and QCD in nuclei and nuclear processes

1 Introduction

A significant difference between nucleon and nuclear struc-
ture functions was first observed in deep inelastic scatter-
ing by the EMC collaboration [1]. Since then, considerable
experimental and theoretical efforts have been devoted to
detailed investigations of nuclear modifications of parton
distributions (for a review see e.g. [2]). Their phenomeno-
logical discussion has been carried out almost entirely in
momentum space. However, interesting insights can be ob-
tained also in coordinate space. Here the parton distribu-
tions are defined in leading twist accuracy as correlation
functions involving two quark or gluon field operators, sep-
arated by a light-cone distance y+ [3,4]. In deep inelastic
scattering from nuclei as viewed in the laboratory frame,
where the target is at rest, the longitudinal distance y+/2
involved in the parton correlation functions can be com-
pared with typical length scales provided by the nucleus.
This offers new possibilities for extracting information on
the nature of nuclear effects in parton distributions [5,6].

To demonstrate the relevance of coordinate-space dis-
tances in nuclear parton distributions we focus on deep in-
elastic scattering. Consider first the scattering from a free
nucleon with momentum P and invariant mass M in the
laboratory frame. The momentum transfer q, carried by
a Alexander von Humboldt fellow
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the exchanged virtual photon, is taken in the (longitudi-
nal) 3̂-direction, qµ = (ν,0⊥,

√
ν2 +Q2), with Q2 = −q2.

In the Bjorken limit, ν2 À Q2 ÀM2 with x = Q2/(2Mν)
fixed, the light-cone components of the photon momen-
tum, q± = q0 ± q3, are q+ ' 2ν and q− ' −Mx. All
information about the response of the target to the high-
energy interaction is in the hadronic tensor

Wµν(q, P ) ∼
∫
d4y eiq·y 〈P |Jµ(y)Jν(0)|P 〉, (1)

defined as the Fourier transform of a product of the elec-
tromagnetic currents Jµ, with its expectation value taken
between the nucleon states. Using

q · y =
1
2
(
q+y− + q−y+

)
− q⊥ · y⊥ = ν y− − Mx

2
y+, (2)

one obtains the following coordinate-space resolutions
along the coordinates y± = t± y3:

δy− ∼ 1
ν

and δy+ ∼ 1
Mx

. (3)

At y− = 0 the current correlation function in (1) is not
analytic since it vanishes for y+y− − (y⊥)2

< 0 because
of causality (see e.g. [7]). Indeed in perturbation theory
it turns out to be singular at y− = 0. Assuming that
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Fig. 1. a, b Two examples
of diagrams illustrating the
space-time pattern of deep
inelastic scattering

the integrand in (1) is an analytic function of y− else-
where, this implies that Wµν is dominated for q+ → ∞
by contributions from y− = 0. Using causality one then
finds that, in the transverse plane, only contributions from
(y⊥)2 ' 1/Q2 are relevant: in deep inelastic scattering the
hadronic tensor is dominated by contributions from the
light cone, i.e. y2 = 0.

Furthermore, (3) suggests that along the light cone,
one is dominantly probing larger distances as x is de-
creased. It has been shown that such a behavior is con-
sistent with approximate Bjorken scaling [8]. An analysis
of nucleon structure functions in coordinate space as car-
ried out in Sect. 3 confirms the above conjecture. In the
Bjorken limit the dominant contributions to the hadronic
tensor at small x come from light-like separations of order
y+ ∼ 1/(Mx) between the electromagnetic currents.

In the laboratory frame our considerations imply that
deep inelastic scattering involves a longitudinal correlation
length

y3 ' y+

2
≡ l (4)

of the virtual photon. Consequently, large longitudinal dis-
tances are important in the scattering process at small x.
This can also be deduced in the framework of time-ordered
perturbation theory (see e.g. [9]), where the typical prop-
agation length of hadronic configurations present in the
interacting photon is y3 ∼ 1/(2Mx), in accordance with
our discussion.

The space-time pattern of deep inelastic scattering is
illustrated in Fig. 1 in terms of the imaginary part of
the forward Compton amplitude: the virtual photon in-
teracts with partons which propagate a distance y+ along
the light cone. The characteristic laboratory frame corre-
lation length l is one half of that distance. This behav-
ior is naturally implemented in coordinate-space (or so-
called Ioffe-time) distribution functions. They are related
to momentum-space distributions through Fourier trans-
formation and thus select contributions to the scattering
process which result from specific light-cone distances y+.
For example, the charge-conjugation-even quark distribu-

tion in coordinate space reads:

Q(y+, Q2) ≡
∫ 1

0

dx
[
q(x,Q2) + q̄(x,Q2)

]
× sin

(
My+

2
x

)
. (5)

Here q(x,Q2) and q̄(x,Q2) are the quark and antiquark
momentum-space distribution functions which depend on
Bjorken x and on the momentum scale Q2. At lowest order
in the strong coupling constant αs, the distribution Q is
related to the structure function F2, which is measured in
deep inelastic scattering, through:1

F2(y+, Q2) =
∑
f

e2
f Qf (y+, Q2)

=
∫ 1

0

dx

x
F2(x,Q2) sin

(
My+

2
x

)
, (6)

where ef is the fractional electromagnetic charge of a
quark with flavor f .

If one compares the longitudinal correlation length l
from (4) with the average nucleon-nucleon distance in the
nucleus, d ≈ 2 fm, one can distinguish two different kine-
matic regions:

(i) At small distances, l < d, the virtual photon scatters
incoherently from the individual hadronic constituents
of the nuclear target. Possible modifications of Q(y+)
in this region are caused by bulk nuclear effects such
as binding and Fermi motion.

(ii) At larger distances, l > d, it is likely that several nu-
cleons participate collectively in the interaction. Mod-
ifications of Q(y+) are now expected to come from the
coherent scattering of the photon on several nucleons
in the target. Using l ∼ 1/(2Mx), this region corre-
sponds to the kinematic domain x <∼ 0.05.

This suggests that the nuclear modifications seen in
coordinate-space distributions will be quite different in the
regions l > 2 fm and l < 2 fm.

1 In higher orders in αs this is a matter of scheme conventions
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Fig. 2. Coordinate-space quark and gluon distribu-
tions resulting from the CTEQ4L parametrization of
momentum-space distributions, taken at a momentum
transfer Q2 = 4 GeV2. A sum over the u and d quarks
is implied in the functions Qv and Q

In the following we first recall, in Sect. 2, the defini-
tion of coordinate-space distribution functions and review
their relation to QCD operators. In Sect. 3 we discuss the
coordinate-space distribution functions of free nucleons.
Nuclear modifications of quark and gluon distributions are
investigated in Sect.4. A short summary is given in Sect.5.

2 Coordinate-space distribution functions

It is useful to express coordinate-space distributions in
terms of a dimensionless variable. For this purpose let
us introduce the light-like vector nµ with n2 = 0 and
P · n = P 0 − P 3. As discussed in the introduction, dom-
inant contributions to (1) come from the vicinity of the
light cone, where y is approximately parallel to n. The
dimensionless variable z = y · P then plays the role of a
coordinate conjugate to Bjorken x. It is useful to bear in
mind that the value z = 5 corresponds in the laboratory
frame to a light-cone distance y+ = 2z/M ≈ 2 fm or,
equivalently, to a longitudinal distance l ≡ y+/2 ≈ 1 fm.

In accordance with the charge conjugation (C) prop-
erties of momentum-space quark and gluon distributions,
one defines coordinate-space distributions by [10]

Q(z,Q2) ≡
∫ 1

0

dx
[
q(x,Q2) + q̄(x,Q2)

]
sin(z x), (7)

Qv(z,Q2) ≡
∫ 1

0

dx
[
q(x,Q2)− q̄(x,Q2)

]
cos(z x), (8)

G(z,Q2) ≡
∫ 1

0

dxx g(x,Q2) cos(z x), (9)

where q, q̄ and g are the momentum-space quark, anti-
quark and gluon distributions, respectively. Flavor degrees
of freedom are suppressed here.

In leading twist accuracy, the coordinate-space distri-
butions (7–9) are related to forward matrix elements of
non-local QCD operators on the light cone [3,4]:

Q(z,Q2) =
1

4iP · n 〈P |ψ(y)n/Γ (y)ψ(0)|P 〉Q2

− (y ↔ −y), (10)

Qv(z,Q2) =
1

4P · n 〈P |ψ(y)n/Γ (y)ψ(0)|P 〉Q2

+ (y ↔ −y), (11)

G(z,Q2) = nµnν
1

2(P · n)2

×〈P |Gµλ(y)Γ (y)Gλν(0)|P 〉Q2 . (12)

Here ψ denotes the quark field and Gµν the gluon field
strength tensor. The path-ordered exponential

Γ (y) = P exp
[
ig yµ

∫ 1

0

dλAµ(λy)
]
, (13)

where g denotes the strong coupling constant and Aµ the
gluon field, ensures gauge invariance of the parton distri-
butions. Note that an expansion of the right-hand side of
(7–9) and (10–12) around y = 0 leads to the conventional
operator product expansion for parton distributions [7].

The functions Q(z), Qv(z) and G(z) characterize the
mobility of partons in coordinate space. Consider, for ex-
ample, the valence quark distribution Qv(z). The matrix
element in (11) has an obvious physical interpretation:
as illustrated in Fig. 1a, it measures the overlap between
the nucleon ground state and a state in which one quark
has been displaced along the light cone from 0 to y. A
different sequence is shown in Fig. 1b. There the photon
converts into a beam of partons which propagates along
the light cone and interacts with partons of the target
nucleon, probing its sea quark and gluon content.

3 Parton distribution functions of free
nucleons

In this section we discuss the properties of coordinate-
space distribution functions of free nucleons. Examples of
the distributions (7–9), using the CTEQ4L parametriza-
tion [11] of momentum-space quark and gluon distribu-
tions taken at a momentum scale Q2 = 4 GeV2, are shown
in Fig. 2.

Some general features can be observed: the C-even
quark distribution Q(z) rises at small values of z, devel-
ops a plateau at z >∼ 5, and then exhibits a slow rise at
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very large z. At z <∼ 5, the function z G(z) behaves simi-
larly as Q(z). For z >∼ 5, z G(z) rises somewhat faster than
Q(z). The C-odd (or valence) quark distribution Qv(z)
starts with a finite value at small z, then begins to fall at
z ' 3, and vanishes at large z. Recall that, in the labora-
tory frame, the scale z ' 5 at which a significant change in
the behavior of coordinate-space distributions occurs, rep-
resents a longitudinal distance comparable to the typical
size of a nucleon.

At z < 5 the coordinate-space distributions are
determined by average properties of the corresponding
momentum-space distribution functions as expressed by
their first few moments [12]. For example, the derivative of
the C-even quark distribution Q(z) taken at z = 0 equals
the fraction of the nucleon light-cone momentum carried
by quarks. The same is true for the gluon distribution
z G(z) (the momentum fractions carried by quarks and
by gluons are in fact approximately equal, a well-known
experimental fact). At z > 10 coordinate-space distribu-
tions are determined by the small x behavior of the cor-
responding momentum-space distributions. Assuming, for
example, q(x) ∼ xα for x < 0.05 implies Q(z) ∼ z−α−1

at z > 10. Similarly, the small x behavior g(x) ∼ xα

leads to z G(z) ∼ z−α−1 at large z. For typical values of
α as suggested by Regge phenomenology [13] one obtains
Qv ∼ z−0.5 while Q(z) and z G(z) become constant at
large z.

The fact that Q(z) and z G(z) extend over large dis-
tances has a natural interpretation in the laboratory
frame. At correlation lengths l much larger than the nu-
cleon size, both Q(z) and z G(z) reflect primarily the par-
tonic structure of the photon. For similar reasons, the va-
lence quark distribution Qv(z) defined in eq. (11) has a
pronounced tail which extends to distances far beyond the
nucleon radius. A detailed and instructive discussion of
this frequently ignored feature can be found in [14].

The following argument makes it plausible that z G(z)
behaves in a similar way as Q(z) at large z: In leading
order in the strong coupling constant αs, gluons enter
through Q2 evolution in the flavor singlet channel. For
the flavor-singlet quark distribution at momentum scale
Q2 one has2

∂Q(z,Q2)
∂ lnQ2

= −αs
2π

{
CF

∫ 1

0

duKQQ(u)Q(uz,Q2)

+Nf
∫ 1

0

duKQG(u) z G(uz,Q2)
}
, (14)

where CF = 4/3 and Nf is the number of active flavors.
The quark-quark and quark-gluon splitting functions read:

KQQ(u) =
1
2
δ(1− u)− (1− u)− 2

[
u

1− u

]
+

×
∫ 1

0

du′
1− u′
u′

, (15)

KQG(u) = −1
3

(1− u)
[
2(1− u)2 + 3u

]
. (16)

2 The complete leading order DGLAP evolution equations in
coordinate space can be found for example in [10]

We are primarily interested in the region of small Bjorken
x, x < 0.01, which corresponds to large z ' 1/(2x).
Looking at Fig. 2 we see that the integrals in (14) re-
ceive their dominant contributions from the region uz > 5
or u > u0 = 10x. In the relevant interval u0 < u ≤ 1
the quark and gluon distributions Q(uz) and uz G(uz) are
smooth functions which can be replaced approximately by
their values at a point u = ū within the interval. Neglect-
ing corrections from u < u0 gives:

∂Q(z,Q2)
∂ lnQ2

≈ −αs
2π

{
CF Q(ūz,Q2)

∫ 1

u0

duKQQ(u)

+Nf ūz G(ūz,Q2)
∫ 1

u0

du

u
KQG(u)

}
.

(17)

We find indeed that at small values of x or, equivalently, at
large z the gluon distribution enters in terms of z G(z). For
x < 0.05, which corresponds to u0 < 0.5, the integral over
the gluon splitting function dominates increasingly over
the quark contribution. This reflects the well-established
dominance of gluons in the QCD evolution at small x [15].
Note that the strong rise of quark and gluon distribution
functions at small x and large Q2 as observed at HERA
leads to an increase of the corresponding coordinate-space
distributions at large z. In this kinematic region, correc-
tions involving derivatives of the gluon distribution have
to be included in (17).

Finally we illustrate the relevance of large distances in
deep inelastic scattering at small x as discussed in the in-
troduction. In Fig. 3 we show contributions to the struc-
ture function F2 in coordinate space which result from
different regions of Bjorken x. We confirm indeed that
contributions from large distances ∼ 1/(Mx) dominate at
small x.

4 Nuclear parton distribution functions

A detailed analysis of nuclear parton distribution func-
tions in momentum space was performed recently in [16]
(for earlier investigations see also [17,18]). In this work a
set of nuclear parton distributions at an initial momen-
tum scale Q2

0 = 2.25 GeV2 was determined by using data
from deep inelastic lepton-nucleus scattering and Drell-
Yan dilepton production in proton-nucleus collisions. Im-
portant constraints were imposed by baryon number and
momentum conservation. Based on the complete set of
these data, a lowest order DGLAP evolution analysis was
performed in order to extract separately the quark and
gluon content of the nuclear distributions. Good agree-
ment with present experimental data for the ratio of the
nuclear to the free nucleon structure function, FA

2 /F
N
2 ,

including its dependence on the momentum transfer Q2,
was achieved.

We shall consider the following ratios of quark and
gluon distribution functions normalized to the number of
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Fig. 3. Contributions from different regions in x to
the F2 combination of coordinate-space quark and an-
tiquark distributions. The CTEQ4L parametrization of
momentum-space distributions, taken at a momentum
scale Q2 = 4 GeV2, has been used

Fig. 4. Momentum-space ratios at Q2 = 4 GeV2 for
gluon distributions, valence-quark distributions, and the
F2 structure function in a 40Ca and b 208Pb according
to [16]

nucleons in the target:

RF2(x,Q2) =
FA

2 (x,Q2)
FN

2 (x,Q2)

=

∑
f e

2
f

[
qA
f (x,Q2) + q̄A

f (x,Q2)
]

∑
f e

2
f

[
qN
f (x,Q2) + q̄N

f (x,Q2)
] , (18)

Rv(x,Q2) =

∑
f

[
qA
f (x,Q2)− q̄A

f (x,Q2)
]

∑
f

[
qNf (x,Q2)− q̄Nf (x,Q2)

] , (19)

Rg(x,Q2) =
gA(x,Q2)
gN(x,Q2)

. (20)

In Fig. 4 typical results from [16] are shown for 40Ca and
208Pb taken at Q2 = 4 GeV2. The ratios shown here and
below have been obtained using the GRV-LO parton dis-
tributions [19]. It was recently shown in [20] that the re-
sults are insensitive to the choice of the parton distribution
set.

The behavior of the structure function ratio RF2 and
its interpretations are familiar from earlier experimental
and theoretical work (see e.g. [2]). At x < 0.1 the ra-
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Fig. 5. Coordinate-space ratios at Q2 = 4 GeV2 for
gluon distributions, valence-quark distributions, and the
F2 structure function in (a) 40Ca and (b) 208Pb

tio is smaller than one, i.e. there is nuclear shadowing,
FA

2 < FN
2 . A small enhancement (”antishadowing”) of

FA
2 is found at x ∼ 0.1. In the region 0.2 < x < 0.7 a

significant depletion of RF2 (the ”EMC effect”) can be
seen. The strong rise of RF2 at x > 0.8 is caused by Fermi
motion. Qualitatively similar effects were obtained for the
first time in [17] for gluon and valence quark distributions.

In [16] it was assumed that at the initial momentum
scale Q2

0 shadowing is of similar size for gluons as for
the structure function F2, i.e. Rg(x,Q2

0) ≈ RF2(x,Q2
0)

for x < 0.01.3 Because of momentum conservation, gluon
shadowing at small x implies antishadowing of nuclear
gluon distributions at larger x. An analysis of the Q2 de-
pendence of the structure function ratio F Sn

2 /FC
2 [21] has

shown that gluon antishadowing in Sn is located in the
region 0.03 < x < 0.4. In [16] it was assumed that this ap-
plies also to other nuclei. Antishadowing was then found
to reach its maximum at x ' 0.15, the maximum being
13% for 40Ca and 20% for 208Pb, as shown in Fig. 4.

The E772 Drell-Yan data show negligible antishadow-
ing of the nuclear quark sea [22]. To account for the small
but significant antishadowing of F2 at x ' 0.15, nuclear

3 Further assumptions, which are not of immediate relevance
for our discussion here, are explained in the original paper
[16]. In particular, it was assumed that shadowing saturates
at very small x. Our conclusions below do not depend on this
assumption, because it affects the behavior of the coordinate-
space distributions only at very large values of y+, far beyond
nuclear dimensions

valence quarks have to be enhanced in this region. Baryon
number conservation then implies shadowing at x < 0.1
also for valence quarks.

Finally let us mention that in [16] the gluon and sea
quark distributions were assumed to show, at x > 0.4, an
“EMC effect” similar to F2. Since both distributions are
small in this domain, this assumption is however of minor
importance for our study.

4.1 Coordinate-space results

Using the momentum-space distributions from [16] we
have calculated the corresponding ratios for nuclear and
nucleon coordinate-space distribution functions:

RF2(z,Q2) =

∫ A
0

dx
x FA

2 (x,Q2) sin(z x)∫ 1

0
dx
x FN

2 (x,Q2) sin(z x)

=

∑
f e

2
f QA

f (z,Q2)∑
f e

2
f QN

f (z,Q2)
, (21)

Rv(z,Q2) =
QA
v (z,Q2)
QN
v (z,Q2)

, (22)

RG(z,Q2) =
zGA(z,Q2)
zGN(z,Q2)

. (23)

Results for 40Ca and 208Pb are presented in Fig. 5.
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At large longitudinal distances l > 2 fm a strong de-
pletion of nuclear parton distributions is found. As dis-
cussed in Sect. 3, the asymptotic behavior of coordinate-
space distributions at large l is determined by the small
x asymptotics of the momentum-space distributions. The
coordinate-space ratio at large distances thus corresponds
to the nuclear shadowing seen in momentum space at
x < 0.1. Note, however, that at finite distances the
coordinate-space distributions correspond to a weighted
integral of momentum-space distributions. A given region
in momentum space is not simply mapped into a partic-
ular finite region in coordinate space. It would, for exam-
ple, be incorrect to associate the Rg < 1 region in Fig. 5
exclusively with the Rg < 1 region in Fig. 4. Instead, the
antishadowing region of momentum space also contributes
significantly up to l <∼ 10 fm. We shall illustrate the map-
ping of momentum-space regions into coordinate space in
more detail in Sect. 4.2.

Shadowing in deep inelastic scattering in the labora-
tory frame can be interpreted as being caused by the co-
herent scattering of hadronic fluctuations of the exchanged
virtual photon with several nucleons in the target. This
picture is nicely consistent with the observation, in Fig. 5,
that the nuclear depletion in coordinate space begins at
distances close to the average nucleon-nucleon separation
in nuclei, l ∼ 2 fm. In momentum space, the Bjorken x
value where shadowing begins does not have such a sug-
gestive direct relation to a physical scale.

Another interesting observation is that in coordinate
space, shadowing sets in at approximately the same value
of l for all sorts of partons. In momentum space, shadow-
ing is found to start at different values of x for different
distributions.

At l <∼ 1 fm, nuclear modifications of parton distribu-
tions are small. In this region, deep inelastic scattering
proceeds from the individual hadronic constituents in the
target nucleus. The intrinsic structure of individual nucle-
ons is evidently not very much affected by nuclear binding.

In the limit l→ 0 the ratio RF2 compares the fractions
of target momentum carried by quarks in nuclei and in
free nucleons, and Rg compares the momentum fractions
carried by gluons. Obviously, RF2 and Rg are correlated
because of momentum conservation. For valence quarks,
baryon number conservation demands Rv = 1 for l→ 0.

We find that at small distances l ≤ 1 fm the gluon
distribution of bound nucleons is enhanced [17] by a small
amount (about 3% for Ca) with respect to free nucleons.
The quark distribution is depleted accordingly. This re-
sult is, however, consistent with zero within experimental
errors (a rigorous error analysis was not performed in [16],
but the error of the total quark momentum integral has
been analyzed in [2]).

In early discussions of the EMC effect [23], the pos-
sibility of an increased correlation length of partons in
nuclei has been suggested. Within the accuracy of present
data, this cannot be verified. Actually it is difficult to give
a precise definition of an average correlation length, since
the coordinate-space parton distributions are not normal-

izable and thus cannot be interpreted as parton number
densities.

4.2 Mapping of momentum-space regions into
coordinate space

To disentangle the relationship between nuclear effects of
parton distributions in momentum and coordinate space,
it is instructive to consider hypothetical momentum-space
ratios in which only one of the observed effects (shadow-
ing, antishadowing or the EMC effect) is present. The ap-
propriate Fourier transformations will then show which
coordinate-space distances are most closely associated
with these momentum-space effects. In the following we
consider 40Ca, fixing the momentum scale at Q2 = 4 GeV2

again.
From Fig. 5 we recall that shadowing is clearly the

dominant effect in coordinate space. To analyze this fur-
ther we first choose Rv and Rg to coincide with the results
of [16] in the momentum-space shadowing region and to be
equal to 1 outside this region (see Fig. 6a). The resulting
coordinate-space ratios are shown in Fig. 6b. The strong
depletion of nuclear distributions at large distances l > 10
fm is determined almost completely by the momentum-
space distribution functions at x <∼ 0.1.

Next we choose Rv and Rg to coincide with [16] in
the momentum-space antishadowing region and to equal
1 elsewhere. By analyzing the corresponding coordinate-
space distributions we find that, against naive expecta-
tion, the moderate enhancement localized in momentum
space around x ' 0.15 corresponds to effects in coordinate
space which spread over a wide range up to l ∼ 10 fm.

The binding and Fermi motion effects shown in Fig. 7
have an exaggerated appearance close to x ∼ 1 simply be-
cause the free nucleon distribution function in the denom-
inator of Rv decreases rapidly there. These effects turn
out to be extremely small when looked at in coordinate
space (see Fig.7b). Clearly, the combined effect of binding
and Fermi motion is marginal and leads at most to small
fluctuations at the level of 1%.

5 Summary

In this paper we have investigated nuclear quark and gluon
distributions in coordinate space [5,6,25]. Coordinate-
space parton distributions are defined as correlation func-
tions involving two quark or gluon fields separated by a
light-cone distance y+. To study nuclear effects, the cor-
responding longitudinal distance l = y+/2 has to be com-
pared with typical length scales in nuclei.

The most significant nuclear effects occur at large lon-
gitudinal distances. A strong depletion of nuclear parton
distributions (shadowing) is found, starting at l = 2 fm
which corresponds to the average nucleon-nucleon dis-
tance in the bulk of nuclei. In particular we find that
shadowing sets in at approximately the same distance l for
all sorts of partons. This is different in momentum space,
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Fig. 6. a Shadowing effect in 40Ca in momentum
space according to [16]. b The coordinate-space ratios
for gluon distributions, valence-quark distributions, and
the F2 structure function in 40Ca which are obtained
after setting the momentum-space ratio to one outside
the shadowing region

Fig. 7. a The EMC and Fermi motion effects for va-
lence quarks in 40Ca in momentum space according to
[16], b The coordinate-space ratio for the valence-quark
distribution in 40Ca which is obtained after setting the
momentum-space ratio to one below the EMC region
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where shadowing starts at different values of Bjorken x for
different distributions.

The magnitude of the shadowing effect increases
steadily between 2 and 10 fm, but there is no trace of
geometrical boundary conditions associated with the nu-
clear radius. Instead, the shadowing effect continues to
increase for distances clearly larger than the nuclear ra-
dius. This feature is also seen in a number of models for
nuclear shadowing (see e.g. [26] and references therein).

At l <∼ 1 fm, nuclear modifications of parton distribu-
tions are very small. The intrinsic structure of individual
nucleons is evidently not very much affected by nuclear
binding. This observation becomes even more apparent by
looking at the combined binding and Fermi motion effects.
Their influence on nuclear coordinate-space distributions
is at the level of about 1%.

Finally, our analysis does not show evidence for a sig-
nificant increase of quark or gluon correlation lengths in
bound nucleons.
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